We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
136
7
avatar

Find the number of integers \(n\) that satisfy \(7 \sqrt{-n^2 + 22n - 21} \le n + 39.\)

 Apr 15, 2019
 #1
avatar+105999 
+2

 

 

Find the number of integers n that satisfy    \(7 \sqrt{-n^2 + 22n - 21} \le n + 39.\)

 

 

Mmm

firstly:

 

\(-n^2+22n-21\ge0\\ n^2-22n+21\le0\\ (n-21)(n-1)\le0\\ 1\le n\le 21\)

 

now

\(7 \sqrt{-n^2 + 22n - 21} \le n + 39\\ 49(-n^2 + 22n - 21) \le n^2+78n + 1521\\ -50n^2 +49*22n-78n - 49*21-1521 \le 0\\ -50n^2 +1000n - 2550 \le 0\\ 50n^2 -1000n + 2550 \ge 0\\ n^2 -20n + 51 \ge 0\\ (n-17)(n-3) \ge 0\\ 0\le n \le 3 \qquad or \qquad n\ge17\)

 

Take the intersection of these restrictions and I get

n can equal    1, 2, 3, 17, 18, 19, 20 or  21

 

You need ot check this. 

 Apr 15, 2019
 #3
avatar
0

Your answer is right :)

Guest Apr 15, 2019
 #4
avatar+105484 
+1

Good job, Melody  !!!!!!

 

 

cool cool cool

CPhill  Apr 15, 2019
 #6
avatar+105999 
0

Thanks Chris :)

Melody  Apr 16, 2019
 #7
avatar+105999 
0

Hi guest, 

Should I interpret that as 'thanks'   ?

Melody  Apr 16, 2019
 #2
avatar
+1

Melody: These are the numbers I found:
n=1;a= 7*sqrt(-n^2 + 22*n -21); b=n+39;printa,  b,n;n++;if(n<30, goto1,0) 

 

n = 1 , 2, 3, 17, 18, 19, 20, 21.

 Apr 15, 2019
edited by Guest  Apr 15, 2019
 #5
avatar+105999 
0

Your answers are the same as mine.

I think you are just having fun using your C++ programing    wink

Melody  Apr 16, 2019

21 Online Users

avatar
avatar
avatar
avatar