We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
155
4
avatar

Find the largest value of \(\frac{y}{x}\) for pairs of real numbers \((x,y)\) that satisfy \((x - 3)^2 + (y - 3)^2 = 6.\)

 Apr 9, 2019
 #1
avatar+6043 
+3

\(y = \pm \sqrt{6-(x-3)^2}+ 3\\ \dfrac{y}{x} = \dfrac{ \pm \sqrt{6-(x-3)^2}+ 3}{x}\\ \text{The maximum will be when the numerator has a positive sign}\\ \dfrac{y}{x} = \dfrac{ \sqrt{6-(x-3)^2}+ 3}{x}\\ \dfrac{d}{dx} \dfrac{y}{x} = -\dfrac{3 (x-1)}{x^2 \sqrt{-x^2+6 x-3}}\\ \text{and this clearly equals 0 at }x=1\)

 

\(\text{The second derivative evaluated at 1 is less than zero so this is a maximum}\)

 

\(\dfrac{y}{x} = \sqrt{6-(1-3)^2}+3 = 3+\sqrt{2}\)

.
 Apr 9, 2019
 #2
avatar+23181 
+5

Find the largest value of
\(\dfrac{y}{x}\)
for pairs of real numbers
\((x,y)\)
that satisfy
\((x - 3)^2 + (y - 3)^2 = 6\).

 

\(\text{Let $OC^2 = x_c^2+y_c^2 = 3^2+3^2 = 2\cdot 3^2 $} \)

 

\(\begin{array}{|rcll|} \hline OT^2 +r^2 &=& OC^2 \\ OT^2 + 6 &=& 2\cdot 3^2 \\ OT^2 &=& 18 - 6 \\ &=& 12 \\ &=& 3\cdot 4 \\ \mathbf{OT} & \mathbf{=} & \mathbf{2\sqrt{3}} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \tan(C) &=& \dfrac{y_c}{x_c} \\ &=& \dfrac{3}{3} \\ \mathbf{\tan(C) } &\mathbf{=}&\mathbf{1} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \tan(B) &=& \dfrac{r}{OT} \\ &=& \dfrac{\sqrt{6}}{2\sqrt{3}} \\ &=& \dfrac{\sqrt{2}\sqrt{3}}{2\sqrt{3}} \\ \mathbf{\tan(B) } &\mathbf{=}&\mathbf{\dfrac{\sqrt{2} }{2 }} \\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline \tan(A) &=& \tan(B+C) \\\\ &=& \dfrac{\tan(B)+\tan(C)} {1-\tan(B)\tan(C)} \\\\ &=& \dfrac{1+\dfrac{\sqrt{2} }{2 }} {1-\dfrac{\sqrt{2} }{2 }} \\\\ &=& \dfrac{2+ \sqrt{2} } {2- \sqrt{2} } \\\\ &=& \dfrac{2+ \sqrt{2} } {2- \sqrt{2} }\cdot \left( \dfrac{2+ \sqrt{2} } {2+ \sqrt{2} } \right) \\\\ &=& \dfrac{\left(2+ \sqrt{2}\right)^2 } {4-2 } \\\\ &=& \dfrac{6+4\sqrt{2}} {2 } \\\\ \mathbf{\tan(A) } &\mathbf{=}&\mathbf{3+2\sqrt{2} } \\ \hline \end{array}\)

 

The largest value of \(\dfrac{y}{x} = \tan(A) = 3+2\sqrt{2} \)

 

laugh

 Apr 9, 2019
 #3
avatar+104069 
+2

That's a pretty unique method, Heureka.....where did you find it  ????

 

 

 

 

cool cool cool

CPhill  Apr 9, 2019
 #4
avatar+23181 
+2

Hallo CPhill,

 

Thank you,

the answer

i found it myself.

 

laugh

heureka  Apr 10, 2019

12 Online Users