Find the largest value of yx for pairs of real numbers (x,y) that satisfy (x−3)2+(y−3)2=6.
y=±√6−(x−3)2+3yx=±√6−(x−3)2+3xThe maximum will be when the numerator has a positive signyx=√6−(x−3)2+3xddxyx=−3(x−1)x2√−x2+6x−3and this clearly equals 0 at x=1
The second derivative evaluated at 1 is less than zero so this is a maximum
yx=√6−(1−3)2+3=3+√2
.Find the largest value of
yx
for pairs of real numbers
(x,y)
that satisfy
(x−3)2+(y−3)2=6.
Let OC2=x2c+y2c=32+32=2⋅32
OT2+r2=OC2OT2+6=2⋅32OT2=18−6=12=3⋅4OT=2√3
tan(C)=ycxc=33tan(C)=1
tan(B)=rOT=√62√3=√2√32√3tan(B)=√22
tan(A)=tan(B+C)=tan(B)+tan(C)1−tan(B)tan(C)=1+√221−√22=2+√22−√2=2+√22−√2⋅(2+√22+√2)=(2+√2)24−2=6+4√22tan(A)=3+2√2
The largest value of yx=tan(A)=3+2√2