Processing math: 100%
 
+0  
 
0
1357
4
avatar

The legs of a right triangle are 8 and 15.  Find the altitude to the hypotenuse.

 Jun 10, 2020
 #1
avatar+280 
+1

Hello! I'm working on the problem now. There's quite a bit of steps. However, it is possible. Don't get discouraged. First you need to determine the length of the hypotenuse using the Pythagorean theorem. It's length is 17. 

From there, I looked up how to do altitude and you need the height of the triangle so I decided to use this formula: 
a = 1/2 * bh

 

Before using this formula, you need to calculate the area first. For this, I used Heron's Formula. You need to find the semi perimeter, so to get this, add all of the sides together & divide by 2. You should get 20. Then I got the area by using Heron's Formula:

20(2017)(2015)(208)=20(3)(5)(12)=3600=60
 

Now that you have your area, 60, you can use the formula above, a = 1/2 * bh. Just substitute your area into the equation and solve for you height.

60=12(14)h

60=7h

h=8.57

 

(Will continue... still solving)

 Jun 11, 2020
edited by auxiarc  Jun 11, 2020
 #2
avatar+23254 
0

I'll attempt this problem in a different way ...

 

Draw right triangle(ABC) with C the right angle.

Let AC = 8 and BC = 15.

Using the Pythagorean Theorem AB = 17.

 

Drop a perpendicular from angle(C) to the hypotenuse AB. 

Label the point of intersection P.

PC is the height.

 

By similar triangles (or a theorem from your textbook):

PA / AC  =  AC / AB    --->     PA / 8  =  8 / 17        --->     PA  =  64 / 17

PB / BC  =  BC / BA    --->     PB /15  =  15 / 17     --->     PB =  225 / 17

 

Continuing with similar trianges (or another theorem):

AP / PC  =  PC / PB     --->     ( 64 / 17 ) / PC  =  PC / ( 225 / 17 )

   cross-multiplying:     ( 64 / 17 ) · ( 225 / 17 )  =  PC2 

                                    ( 64 · 225 ) / ( 17 · 17 )  =  PC2 

                                                    14,400 / 289  =  PC2 

                                                           120 / 17  =  PC

   as a decimal:  7.0588...

 Jun 11, 2020
 #3
avatar+26396 
+1

The legs of a right triangle are 8 and 15.  Find the altitude to the hypotenuse.

 

Formula: hc=abc (right triangle)

 

hc=abc|c=a2+b2hc=aba2+b2hc=81582+152hc=120289hc=12017

 

laugh

 Jun 11, 2020
edited by heureka  Jun 11, 2020
 #4
avatar+9675 
0

Have you heard of the "inverse Pythagorean theorem"?

 

Let a and b be the legs of a right triangle, and h be the altitude to the hypotenuse.

 

The inverse Pythagorean theorem states that h2=a2+b2.

 

We can use this equation to solve this problem.

 

Let h be the altitude to the hypotenuse.

 

1h2=182+1152h2=120282+152=(12017)2h=12017

 Jun 11, 2020

2 Online Users

avatar