We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

I don't understand the first two. I can't find the answer. I think the last 4 are correct but I'm not sure. Please help!

mathelp Aug 24, 2018

#1**+2 **

For the first two, you can use Pythagorean Theorem. This states that \({a}^{2}+{b}^{2}={c}^{2}\), where \(a\) and \(b\) are the legs, and \(c\) is the hypotenuse.

Problem 1: We already have sides \(a = 10\) and \(c = \sqrt{170}\). We can move the formula around for it to fit this problem better. We can change it to \({b}^{2}={c}^{2}-{a}^{2}\). When subsituting our values in, we can get \({b}^{2}={\sqrt{170}}^{2}-{10}^{2}\). When we square both values, we can get \({b}^{2} = 170-100\), so \({b}^{2} = 70\). We can solve this to be \(b = \sqrt{70}\) or \(x = \sqrt{70}\).

Problem 2: We already have sides \(b = 5\sqrt{2}\) and \(c = 13\). We can move the formula around for it to fit this problem better. We can change it to \({a}^{2}={c}^{2}-{b}^{2}\). When plugging in our values, we can get \({a}^{2} = {13}^{2} - ({5\sqrt{2})}^{2}\). By solving this, we can get \({a}^{2} = 119\) which equals \(a = \sqrt{119}\) or \(x = \sqrt{119}\).

- Daisy

dierdurst Aug 24, 2018