We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
219
2
avatar+165 

The parabola with equation y=ax^2+bx+c is graphed below:

The zeros of the quadratic ax^2+bx+c are at x=m and x=n, where m is bigger than n. What is m-n?

 Jan 6, 2019
 #1
avatar+28135 
+4

Here's the equation of the curve:

 

 

Can you take it from here?

 Jan 6, 2019
 #2
avatar+103131 
+1

Here's another way

In the form   ax^2 + bx + c, the equation of the x coordinate of the vertex is given by   -b/ 2a

 

So.....   2 =  -b / [2a]  ⇒   4a = - b  ⇒  b = - 4a

 

And we know that

 

1 = a(2)^2 - 4a(2) + c           and    -3  =  a(-4)^2 - 4a(-4)  + c 

1  = 4a - 8a + c                              -3 = 16a + 16a + c

1 = -4a + c                                      -3 = 32a + c    ⇒    3 = -32a - c

 

Add the last two equations and we have that

4 = -36a

-4/36 = a

-1/9 = a

 

And   b = -4a =  -4(-1/9) = 4/9 

 

To find c, we have

 

1 = (-1/9)(2)^2 + (4/9)(2) + c

1 =  (-4/9) + 8/9 + c

1 = 4/9 + c

5/9 = c   

 

 

So.....the function is

 

y = (-1/9)x^2 + (4/9)x + 5/9

 

To find tthe zeroes, set this = 0

 

(-1/9)x^2 + (4/9)x + 5/9  = 0           multiply through by  - 9

 

x^2 - 4x -  5   = 0            factor

 

(x - 5) ( x + 1)  = 0

 

Setting each factor to  0 and solving for x and we get  that   x = - 1  or x = 5

 

So   m = 5  and n = -1

 

So

 

m - n =   5 -  (-1)   =   6

 

 

cool cool cool           

 Jan 6, 2019

9 Online Users

avatar