+0  
 
+1
112
2
avatar+45 

The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle? Express your answer in terms of pi and simplest radical form.

anomy  Aug 13, 2018
 #1
avatar+7533 
+3

The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle?

 

perimeter \(\triangle\) = 3a

radius O = r

 

\(cos(30°)=\frac{a}{2r}\\ r=\frac{a}{2\cdot cos(30°)}\\ a=2r\cdot cos(30°)\)

 

\(\large\color{blue}3a=r^2\pi\)

 

\(3a=(\frac{a}{2\cdot cos(30°)})^2\cdot \pi\\ 3a=\frac{\pi a^2}{4\cdot cos^2(30°)}\\ \color{blue}a=\frac{3\cdot 4\cdot cos^2(30°) }{\pi}=\frac{3\cdot 4\cdot (\frac{1}{2}\sqrt{3})^2 }{\pi}=\frac{3^2}{\pi}\\ \color{blue}a=2.86479..\)

 

\(r=\frac{3\cdot 4\cdot cos^2(30°) }{2\pi\cdot cos(30°)}\\ \color{blue}r=\frac{6\cdot cos(30°)}{\pi}=\frac{6\cdot (\frac{1}{2}\sqrt{3})}{\pi}=\frac{3\cdot \sqrt{3}}{\pi}\\ \color{blue}r=1.65399\)

 

proof:
 

\(perimeter \triangle=area\ O\\ 3a=r^2\pi\\ 3\cdot \frac{3\cdot 4\cdot cos^2(30°) }{\pi}=\pi\cdot (\frac{6\cdot cos(30°)}{\pi})^2\\ 8.59437=8.59437\)

 

laugh  !

asinus  Aug 13, 2018
edited by asinus  Aug 13, 2018
edited by asinus  Aug 14, 2018
edited by asinus  Aug 14, 2018
edited by asinus  Aug 14, 2018
 #2
avatar+9686 
+4

The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle? Express your answer in terms of pi and simplest radical form.

laugh

Omi67  Aug 13, 2018

18 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.