+0  
 
0
92
2
avatar

 

The complex numbers z and w are graphed below. The quotient \(\dfrac{z}{w}\) can be written in the form \(r(\cos\theta+i\sin\theta)\) where \(r\geq 0\) and  \(\theta\in[0,2\pi)\). Find \(r\geq 0\).

 Dec 21, 2019
 #1
avatar
0

Since z = 2e^(i*pi//6) and w = 5e^(i*2*pi/3), z/w = 2/5e^(-5*pi/6).  Therefore, r = 2/5.

 Dec 21, 2019
 #2
avatar
0

waits its supposed to be find \((r,\theta)\)  not whetever it is above

Guest Dec 22, 2019

50 Online Users

avatar
avatar
avatar