We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
173
1
avatar+15 

We have a triangle $\triangle ABC$ and a point $K$ on $BC$ such that $AK$ is an altitude to $\triangle ABC$. If $AC = 9,$ $BK = \sqrt{5}$, and $CK = 4,$ then what is $AB$?

 Aug 16, 2018
 #1
avatar+100516 
+1

If AK is an  altitude, then angle AKC  is   a right angle

 

By the Pythagorean Theorem...

 

AK  = √  [ AC^2  - CK^2 ] = √ [ 9^2  - 4^2 ] = √ [ 81 - 16] = √65

 

Also...angle  AKB is right....which implies that

 

AB  = √ [ AK^2 + BK^2 ] = √ [  (√ 65)^2 + (√5)^2 ] =  √ [65 + 5 ] =    √70  units^2

 

 

 

cool cool cool

 Aug 16, 2018

38 Online Users

avatar
avatar