Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2112
2
avatar+1245 

A point P is randomly selected from the square region with vertices at (±2,±2). What is the probability that P is within one unit of the origin? Express your answer as a common fraction in terms of π.

 Mar 31, 2018
 #1
avatar+9488 
+3

Here's a graph for reference:  https://www.desmos.com/calculator/nu0suazdzo

 

side length of square  =  4

radius of circle  =  1

 

probability that a point in the square is in the circle

=  area of circle / area of square

=  ( pi * 12 ) / ( 42 )

=   pi / 16

 Mar 31, 2018
 #2
avatar+118704 
+3

A point P is randomly selected from the square region with vertices at (±2,±2). What is the probability that P is within one unit of the origin? Express your answer as a common fraction in terms of pi

 

Area of square = 4*4=16 u^2

Area of circle = πr2=π12=πunits2

 

Prob that the point will be in the circle =  π16

 

 

 Mar 31, 2018

1 Online Users

avatar