+0  
 
0
77
1
avatar

\(\text{In trapezoid $PQRS,$ $\overline{PQ} \parallel \overline{RS}$. Let $X$ be the intersection of diagonals $\overline{PR}$ and $\overline{QS}$. The area of triangle $PQX$ is $20,$ and the area of triangle $RSX$ is $45.$ Find the area of trapezoid $PQRS$. }\)

 Mar 25, 2020
 #1
avatar+24995 
+2

In trapezoid \(PQRS\), \(\overline{PQ} \parallel \overline{RS}\).
Let \(X\) be the intersection of diagonals \(\overline{PR}\) and \(\overline{QS}\).
The area of triangle \(PQX\) is \(20\), and the area of triangle \(RSX\) is \(45\).
Find the area of trapezoid \(PQRS\).

 

\(\begin{array}{|rcll|} \hline \text{Let Area }A_1 &=& [PQX] \\ A_1 &=& 20 \\\\ \text{Let Area }A_2 &=& [RSX] \\ A_2 &=& 45 \\\\ \text{Let Area }A_3 &=& [PXS] \\\\ \text{Let Area }A_4 &=& [QXR] \\\\ \text{Let Area }A_5 &=& [PSR] \\ &=& A_2+A_3 \\\\ \text{Let Area }A_6 &=& [QSR] \\ A_6 &=& A_2 +A_4 \\ \hline \mathbf{A_5} &=& \mathbf{A_6} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{A_5} &=& \mathbf{A_6} \\ A_2+A_3 &=& A_2 +A_4 \\ \mathbf{A_3 }&=& \mathbf{A_4} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline A_3 = \dfrac{SX*h_1}{2} && A_1 = \dfrac{QX*h_1}{2} \\ \mathbf{\dfrac{A_3}{A_1} }&=& \mathbf{\dfrac{SX}{QX}} \\\\ A_2 = \dfrac{SX*h_2}{2} && A_4 = \dfrac{QX*h_2}{2} \\ \mathbf{\dfrac{A_2}{A_4} }&=& \mathbf{\dfrac{SX}{QX}} \\\\ \dfrac{SX}{QX}=\mathbf{\dfrac{A_3}{A_1} }&=&\mathbf{\dfrac{A_2}{A_4} } \quad | \quad A_4 = A_3 \\\\ \dfrac{A_3}{A_1} &=& \dfrac{A_2}{A_3} \\\\ A_3^2 &=& A_1A_2 \\ A_3^2 &=& 20*45 \\ A_3^2 &=& 900 \\ \mathbf{A_3} &=& \mathbf{30} \\\\ A_4 &=& A_3 \\ \mathbf{A_4} &=& \mathbf{30} \\ \hline \end{array}\)

 

\(\text{The area of trapezoid $PQRS = A_1+A_2+A_3+A_4 = 20+45+30+30=\mathbf{125}$ }\)

 

laugh

 Mar 25, 2020

5 Online Users

avatar
avatar