+0  
 
0
107
3
avatar

Evaluate $\left\lfloor \left\lceil \left(\frac{13}{7}\right)^2\right\rceil+\frac{17}{4}\right\rfloor$.

.

 Feb 4, 2021
 #1
avatar+1764 
0

I'm sorry about the formatting, I keep telling myself that I will learn latex, but I've been procrastinating. 

floor(ceil((13/7)^2)+17/4)

floor(ceil(169/49)+17/4)

floor(4+17/4)

8

 

I hope this helped. :)))

=^._.^=

 Feb 4, 2021
 #2
avatar
0

That's OK. I will do the translation for you.

 

\(\left\lfloor \left\lceil \left(\frac{13}{7}\right)^2\right\rceil+\frac{17}{4}\right\rfloor = \left\lfloor \left\lceil{\frac{169}{49}} \right\rceil + \frac{17}{4} \right\rfloor \\ \left\lfloor \left\lceil \left(\frac{13}{7}\right)^2\right\rceil+\frac{17}{4}\right\rfloor = \left\lfloor 4 + \frac{17}{4} \right\rfloor\\ \left\lfloor \left\lceil \left(\frac{13}{7}\right)^2\right\rceil+\frac{17}{4}\right\rfloor = 8\)

Guest Feb 4, 2021
 #3
avatar+1764 
0

Thanks for translating. :)))

 

=^._.^=

catmg  Feb 5, 2021

23 Online Users

avatar
avatar
avatar