We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
49
1
avatar

Find the product of the three smallest, positive, non-integer solutions to \(\lfloor x \rfloor \lceil x \rceil = x^2.\)

 May 9, 2019
 #1
avatar+8396 
+3

If   0 < x < 1 ,     \(\lfloor x \rfloor \lceil x \rceil = 0\cdot1=0\)     but     \(0\nless\sqrt0\)

 

If   1 < x < 2 ,     \(\lfloor x \rfloor \lceil x \rceil = 1\cdot2=2\)     and    \(1<\sqrt2<2\)

 

So   \(x=\sqrt2\)   is a solution to  \(\lfloor x \rfloor \lceil x \rceil = x^2\)

 

If   2 < x < 3 ,     \(\lfloor x \rfloor \lceil x \rceil = 2\cdot3=6\)     and    \(2<\sqrt6<3\)

 

So   \(x=\sqrt6\)   is a solution to  \(\lfloor x \rfloor \lceil x \rceil = x^2\)

 

If   3 < x < 4 ,     \(\lfloor x \rfloor \lceil x \rceil = 3\cdot4=12\)     and    \(3<\sqrt{12}<4\)

 

So   \(x=\sqrt{12}\)   is a solution to  \(\lfloor x \rfloor \lceil x \rceil = x^2\)

 

The product of the three smallest, positive, non-integer solutions  =  \(\sqrt2\cdot\sqrt6\cdot\sqrt{12}\,=\,\sqrt{144}\,=\,12\)

.
 May 9, 2019

10 Online Users

avatar