We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
41
1
avatar

show that the circle x2+y2-16x-20y+115=0 and x2+y2+8x-10y+5=0 are tangent .

 Nov 12, 2019

Best Answer 

 #1
avatar+19773 
+2

Find the centers of the circles

x^2-16x +64     +y^2 -20 y +100    +115 -64 -100 = 0

(x-8)^2   + (y-10)^2  = 49

center (8,10)   radius = 7

 

x^2+8x + 16    + y^2-10y +25   +5 -16-25 =0

(x+4)^2   + (y-5)^2 = 36

center (-4,5)    radius = 6

 

Does the distance between the centers = the radii combined?   If so, they are tangent...

 

d^2 = (8--4)^2 + (10-5)^2

           144      + 25

d = 13        radii = 6+7 = 13       Yeas they are tangent....they touch at one point.

 Nov 12, 2019
 #1
avatar+19773 
+2
Best Answer

Find the centers of the circles

x^2-16x +64     +y^2 -20 y +100    +115 -64 -100 = 0

(x-8)^2   + (y-10)^2  = 49

center (8,10)   radius = 7

 

x^2+8x + 16    + y^2-10y +25   +5 -16-25 =0

(x+4)^2   + (y-5)^2 = 36

center (-4,5)    radius = 6

 

Does the distance between the centers = the radii combined?   If so, they are tangent...

 

d^2 = (8--4)^2 + (10-5)^2

           144      + 25

d = 13        radii = 6+7 = 13       Yeas they are tangent....they touch at one point.

ElectricPavlov Nov 12, 2019

11 Online Users

avatar
avatar
avatar