We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
110
2
avatar+142 

\(\frac{1}{r^3+7}-7=\frac{-r^3}{r^3+7}\)

 

Solve for all values of r

 Jun 16, 2019
 #1
avatar
0

Solve for r:
1/(r^3 + 7) - 7 = -r^3/(r^3 + 7)

Multiply both sides by r^3 + 7:
1 - 7 (r^3 + 7) = -r^3

Expand out terms of the left hand side:
-7 r^3 - 48 = -r^3

Add r^3 + 48 to both sides:
-6 r^3 = 48

Divide both sides by -6:
r^3 = -8

Taking cube roots gives 2 (-1)^(1/3) times the third roots of unity:
 r = -2      or      r = 2 (-1)^(1/3)      or      r = -2 (-1)^(2/3)

 Jun 16, 2019
 #2
avatar+7711 
0

\(\dfrac{1}{r^3 + 7} - 7 = \dfrac{-r^3}{r^3 + 7}\\ 1 - 7(r^3 + 7) = -r^3, r \neq \sqrt[3]{7}\\ 1 - 7r^3 - 49 = -r^3, r \neq \sqrt[3]{7}\\ 6r^3 = -48, r \neq \sqrt[3]{7}\\ r^3 = -8\\ r = -2, -2\omega, -2\omega^2\text{ where }\omega\text{ and }\omega^2\text{ denotes the cube roots of unity.}\)

.
 Jun 22, 2019

30 Online Users

avatar