We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
104
1
avatar

Find the sum of the real values of x such that the infinite geometric series \(x+\frac{1}{2}x^3+\frac{1}{4}x^5+\frac{1}{8}x^7+\dots\) is equal to -12.

 Feb 21, 2019
 #1
avatar+18965 
+2

a1 = x     r = 1/2 x^2

 

Sn =  a1 (1-r^n)/(1-r) = a1/(1-r)         =    x /  ( 1 - 1/2x^2)  = -12

                                                                x = -12 + 6x^2

                                                                0 = 6x^2 -x - 12               x = 18/12     and     -16/12

                                                                                                          added together = 2/12 = 1/6           

 Feb 21, 2019

10 Online Users