+0  
 
0
127
4
avatar

A canopy tour company designs zip line rides through forest and jungle environments. One particular zip line takes the passenger through a waterfall, the maximum height of which is 167 ft. The dimensions of both the zip line and the waterfall are shown in the image below. 

 Apr 14, 2021
edited by Guest  Apr 14, 2021
 #1
avatar+121004 
0

No image  shown......

 

 

cool cool cool

 Apr 14, 2021
 #2
avatar+180 
+2

There is an image but it takes a while to load.

 

indecision

Mathdory  Apr 14, 2021
 #3
avatar+121004 
+1

Thx, Mathdory, I see it now   !!!!

 

 

cool cool cool

CPhill  Apr 14, 2021
 #4
avatar+121004 
+2

The waterfall is a parabola....let  its  vertex  be  (0, 167)

And  the  point  (75,0)   is  on  the parabola

 

Using  the  vertex form   we  can  find "a:"  thusly

 

0  =  a ( 75 - 0)^2   +  167

 

0 =  a  (75)^2  +  167

 

-167 / ( 75^2)  =  a  =  -167 / 5625

 

So.....the  equation for  the waterfall is   :

 

y  =  (-167 / 5625) x^2 +  167 

 

The  zipline is a  straight  line   with points  (0, 130)  qnd (100, 0)  on the line

 

Its  slope  is    [ -130 / 100]  = -13/10

 

Its equation  is

 

y = (-13/10)x  + 130

 

 

cool cool cool

 

 

 

 

 

 

 

 

 

 Apr 14, 2021

5 Online Users

avatar
avatar
avatar
avatar