+0

# help

0
127
4

A canopy tour company designs zip line rides through forest and jungle environments. One particular zip line takes the passenger through a waterfall, the maximum height of which is 167 ft. The dimensions of both the zip line and the waterfall are shown in the image below.

Apr 14, 2021
edited by Guest  Apr 14, 2021

#1
+121004
0

No image  shown......

Apr 14, 2021
#2
+180
+2

There is an image but it takes a while to load.

Mathdory  Apr 14, 2021
#3
+121004
+1

Thx, Mathdory, I see it now   !!!!

CPhill  Apr 14, 2021
#4
+121004
+2

The waterfall is a parabola....let  its  vertex  be  (0, 167)

And  the  point  (75,0)   is  on  the parabola

Using  the  vertex form   we  can  find "a:"  thusly

0  =  a ( 75 - 0)^2   +  167

0 =  a  (75)^2  +  167

-167 / ( 75^2)  =  a  =  -167 / 5625

So.....the  equation for  the waterfall is   :

y  =  (-167 / 5625) x^2 +  167

The  zipline is a  straight  line   with points  (0, 130)  qnd (100, 0)  on the line

Its  slope  is    [ -130 / 100]  = -13/10

Its equation  is

y = (-13/10)x  + 130

Apr 14, 2021