Evaluate\(\lfloor\sqrt{1}\rfloor + \lfloor\sqrt{2}\rfloor + \lfloor\sqrt{3}\rfloor + .... + \lfloor\sqrt{19}\rfloor\)
Hint:
This is rounding DOWN to the nearest whole number. For example, sqrt(2) would be 1
Hellow Qwertyzz!
Do you know what floor function is? Just a reminder: Floor(3.9) = 3
Sqrt(1) = 1
Sqrt(2) = 1.414...
Sqrt(3) = 1.732...
Sqrt(4) = 2
Sqrt(5) = 2.236...
...
Sqrt (9) = 3
....
Sqrt(16) = 4
See the pattern?
The terms evaluate into an integer and only increases at the next perfect square.
Solving:
1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 4 + 4 + 4 + 4
= Gonna let you do some work