Let n and k be positive integers such that (nk):(nk+1)=4:11. Find the smallest possible value of n.
n!k!(n−k)!n!(k+1)!(n−k−1)!=(k+1)!(n−k−1)!k!(n−k)!=k+1n−k=411
11k+11=4n−4k4n−15k=11
We can use the Euclidean algorithm to find n=14, k=3
.Let
n
and
k
be positive integers such that (nk):(nk+1)=4:11. Find the smallest possible value of .
(nk)(nk+1)=411|(nk+1)=(nk)⋅n−kk+1(nk)(nk)⋅n−kk+1=411k+1n−k=41111(k+1)=4(n−k)11k+11=4n−4k4n−15k=114n=11+15kn=11+15k4=11+1−1+15k+k−k4=12+16k−(1+k)4=12+16k4−(1+k)4=3+4k−(1+k)4⏟=an=3+4k−aa=1+k44a=1+kk=4a−1,a∈Zn=3+4k−a|k=4a−1=3+4(4a−1)−a=3+16a−4−an=−1+15anmin=−1+15⋅1|a=1nmin=14
k=4a−1|a=1k=4⋅1−1k=3(143)(144)=411