Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
750
2
avatar

Let n and k be positive integers such that (nk):(nk+1)=4:11. Find the smallest possible value of n.

 Mar 26, 2019
 #1
avatar+6251 
+2

n!k!(nk)!n!(k+1)!(nk1)!=(k+1)!(nk1)!k!(nk)!=k+1nk=411

 

11k+11=4n4k4n15k=11

 

We can use the Euclidean algorithm to find n=14, k=3

.
 Mar 26, 2019
 #2
avatar+26396 
+1

Let

n

and

k

be positive integers such that (nk):(nk+1)=4:11. Find the smallest possible value of .

 

(nk)(nk+1)=411|(nk+1)=(nk)nkk+1(nk)(nk)nkk+1=411k+1nk=41111(k+1)=4(nk)11k+11=4n4k4n15k=114n=11+15kn=11+15k4=11+11+15k+kk4=12+16k(1+k)4=12+16k4(1+k)4=3+4k(1+k)4=an=3+4kaa=1+k44a=1+kk=4a1,aZn=3+4ka|k=4a1=3+4(4a1)a=3+16a4an=1+15anmin=1+151|a=1nmin=14

 

k=4a1|a=1k=411k=3(143)(144)=411

 

laugh

 Mar 26, 2019

0 Online Users