+0  
 
-1
51
1
avatar+604 

Given that $a$ and $b$ are positive integers and that $a+b=24$, what is the value of $ab$ if $2ab + 10a = 3b + 222$?

gueesstt  Apr 22, 2018
Sort: 

1+0 Answers

 #1
avatar+86613 
+2

Given that $a$ and $b$ are positive integers and that $a+b=24$, what is the value of $ab$ if $2ab + 10a = 3b + 222$?

 

a + b  =  24      so    b = 24 - a

 

Sub this into the other equation

 

2a (24 - a)  + 10a  = 3(24 - a) + 222       simpllify

 

48a - 2a^2  + 10a  = 72 - 3a  + 222

 

-2a^2 + 58a   = 294 - 3a     rearrange as

 

2a^2 - 61a + 294  = 0  factor this as

 

(2a - 49)(a - 6)  =  0

 

Only the second factor will produce an integer if set to 0  ...so  a - 6  = 0  ⇒  a = 6

And b  = 24 - 6  = 18

 

So   ab  =  6*18   =  108

 

 

cool cool cool

CPhill  Apr 22, 2018

29 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy