We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
89
1
avatar

Let a and b be real numbers. Find the maximum value of \(a \cos \theta + b \sin \theta\) in terms of a and b.

 Aug 31, 2019
 #1
avatar+6045 
+1

\(a \cos(\theta) + b \sin(\theta) = \\ \sqrt{a^2 + b^2}\sin(\theta + \phi),~\phi = \tan^{-1}\left(b,a\right)\\ -1 \leq \sin(\theta+\phi) \leq 1\\ \text{The max value is thus $\sqrt{a^2+b^2}$}\)

.
 Aug 31, 2019

7 Online Users

avatar