+0

# help

0
89
2

\begin{align} A_1 & = \sqrt{3} \\ A_2 & = \sqrt{A_1} \\ A_3 & = \sqrt{A_2} \\ & \vdots \\ A_{n+1} &= \sqrt{A_n} \end{align}

What is the value of the infinite product $$A_1 \times A_2 \times A_3\times \cdots \, ?$$

Jul 6, 2020

#1
0

s=1;a=1;listfor(i, 1, 25,s=(2#(3)) * 2#s

OUTPUT =(1.732050808, 2.279507057, 2.615056629, 2.800923042, 2.898753029, 2.948942029, 2.974361459, 2.987153223, 2.99356972, 2.996783135, 2.998391136, 2.99919546, 2.999597703, 2.999798845, 2.999899421, 2.99994971, 2.999974855, 2.999987427, 2.999993714, 2.999996857, 2.999998428, 2.999999214, 2.999999607, 2.999999804, 2.999999902) =It converges to 3

Jul 6, 2020
#2
+21953
0

Let  A1·A2·A3· ...  =  X

Square both sides:

( A1·A2·A3· ... )2  =  X2

(A1)2·[ (A2)2·(A3)2·(A4)2· ... ]  =  X2

But:  (A1) = 3     (A2)2 = A1     (A3)2 = A2     (A4)2 = A3

So:  (A1)2·[ (A2)2·(A3)2·(A4)2· ... ]  =  3·[ A1·A2·A3· ... ]  =  X2

and:  A1·A2·A3· ...  =  X   --->         =  3·[ X ]  =  X2     --->   3  =  X

So, the product is 3.

Jul 6, 2020