+0  
 
0
130
2
avatar+99 

(a) lim x→5 √ ((x − 1) − 2)/ (x − 5)

(b) lim x→0 (sin(3x))/ (5x)

 May 28, 2018
 #1
avatar+97548 
+1

(b) lim x→0 (sin(3x))/ (5x)

 

\(\displaystyle\lim_{x\rightarrow 0}\frac{ sin(3x)}{5x}\\ =\displaystyle\lim_{x\rightarrow 0}\frac{ sin(3x)}{3x\times \frac{5}{3}}\\ =\displaystyle\lim_{x\rightarrow 0}\frac{ sin(3x)}{3x}\times \frac{3}{5}\\ =1 \times \frac{3}{5}\\ =\frac{3}{5}\\\)

.
 May 28, 2018
 #2
avatar+97548 
+1

A note to answerers.

 

Don't bother with the first question as the poster has already reposted it!

 May 28, 2018

36 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.