+0  
 
0
633
2
avatar+99 

(a) lim x→5 √ ((x − 1) − 2)/ (x − 5)

(b) lim x→0 (sin(3x))/ (5x)

 May 28, 2018
 #1
avatar+118690 
+1

(b) lim x→0 (sin(3x))/ (5x)

 

\(\displaystyle\lim_{x\rightarrow 0}\frac{ sin(3x)}{5x}\\ =\displaystyle\lim_{x\rightarrow 0}\frac{ sin(3x)}{3x\times \frac{5}{3}}\\ =\displaystyle\lim_{x\rightarrow 0}\frac{ sin(3x)}{3x}\times \frac{3}{5}\\ =1 \times \frac{3}{5}\\ =\frac{3}{5}\\\)

 May 28, 2018
 #2
avatar+118690 
+1

A note to answerers.

 

Don't bother with the first question as the poster has already reposted it!

 May 28, 2018

2 Online Users

avatar