+0  
 
0
280
2
avatar

which whole numbers between 2 and 40 can be divided by 4 with a remainder of 2 and also be divided by 5 with a remainder of 1

Guest Apr 21, 2017
 #1
avatar+87564 
+2

There may be an easier way, but

 

n mod 4  =  2 ...    n =  ( 6, 10, 14, 18, 22, 26, 30, 34, 38 )  =  A

 

n mod 5  = 1......  n = ( 6, 11, 16, 21, 26, 31, 36)  = B

 

A ∩ B   =  { 6, 26 }

 

 

cool cool cool

CPhill  Apr 21, 2017
edited by CPhill  Apr 21, 2017
 #2
avatar+19819 
+2

which whole numbers between 2 and 40 can be divided by 4 with a remainder of 2

and also be divided by 5 with a remainder of 1

 

\(\begin{array}{rcll} n &\equiv& {\color{red}2} \pmod {{\color{green}4}} \\ n &\equiv& {\color{red}1} \pmod {{\color{green}5}} \\ \text{Let } m &=& 4\cdot 5 = 20 \\ \end{array} \)

 

Because 4 and 5 are relatively prim ( gcd(4,5) = 1 ) we can go on:

 

\(\begin{array}{rcll} x &=& {\color{red}2} \cdot {\color{green}5} \cdot [ \frac{1}{ {\color{green}5} } \pmod{{\color{green}4}} ] +{\color{red}1} \cdot {\color{green}4} \cdot [ \frac{1}{ {\color{green}4} } \pmod{{\color{green}5}} ] +4\cdot 5 \cdot n \quad & | \quad n \in Z \\\\ && [ \frac{1}{ {\color{green}5} } \pmod{{\color{green}4}} ] \\ &=& [ {\color{green}5}^{\varphi({\color{green}4})-1} \pmod {{\color{green}4}} ] \quad & | \quad \varphi({\color{green}4})=4\cdot(1-\frac12)=2 \\ &=& [ {\color{green}5}^{2-1} \pmod {{\color{green}4}} ] \\ &=& [ {\color{green}5}^{1} \pmod {{\color{green}4}} ] \\ &=& [ {\color{green}1} \pmod {{\color{green}4}} ] \\ &=& [ 1] \\\\ && [ \frac{1}{ {\color{green}4} } \pmod{{\color{green}5}} ] \\ &=& [ {\color{green}4}^{\varphi({\color{green}5})-1} \pmod {{\color{green}5}} ] \quad & | \quad \varphi({\color{green}5})=5\cdot(1-\frac15)=4 \\ &=& [ {\color{green}4}^{4-1} \pmod {{\color{green}5}} ] \\ &=& [ {\color{green}4}^{3} \pmod {{\color{green}5}} ] \\ &=& [ {\color{green}4} \pmod {{\color{green}5}} ] \\ &=& [ 4 ] \\\\ x &=& {\color{red}2} \cdot {\color{green}5} \cdot [ 1] + {\color{red}1} \cdot {\color{green}4} \cdot [4] +4\cdot 5 \cdot n \quad & | \quad n \in Z \\\\ x &=& 10+16+20\cdot n \\ x &=& 26 + 20\cdot n \quad & | \quad x_{\text{min}} = 26 \pmod {m} \\ && & | \quad = 26 \pmod {20} = 6 \pmod {20} \\ x &=& 6 + 20\cdot n \quad & | \quad n \in Z \\\\ x_1 &=& 6 + 20\cdot 0 \quad & | \quad n=0 \\ x_1 &=& 6\checkmark \quad & | \quad 2\le x\le40 \\\\ x_2 &=& 6 + 20\cdot 1 \quad & | \quad n=1 \\ x_2 &=& 26\checkmark \quad & | \quad 2\le x\le40 \\ \end{array}\)

 

laugh

heureka  Apr 21, 2017

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.