If
x+1x=1+√52, then find x2000+1x2000.
Let Golden ratio φ=1+√52 Let φ2=1+φ
x+1x=φx2+1x2=(x+1x)2−2=φ2−2|φ2=1+φ=1+φ−2x2+1x2=φ−1x3+1x3=(x2+1x2)×(x+1x)−(x+1x)=(φ−1)×φ−φ=φ2−φ−φ|φ2=1+φ=1+φ−2φx3+1x3=1−φx5+1x5=(x2+1x2)×(x3+1x3)−(x+1x)=(φ−1)×(1−φ)−φ=φ2−φ−φ=φ−φ2−1+φ−φ=φ−φ2−1|φ2=1+φ=φ−(1+φ)−1=φ−1−φ−1x5+1x5=−2
x10+1x10=(x5+1x5)2−2=(−2)2−2=4−2x10+1x10=2x20+1x20=(x10+1x10)2−2=22−2=4−2x20+1x20=2x30+1x30=(x20+1x20)×(x10+1x10)−(x10+1x10)=2×2−2=4−2x30+1x30=2x40+1x40=(x30+1x30)×(x10+1x10)−(x20+1x20)=2×2−2=4−2x40+1x40=2x50+1x50=(x40+1x40)×(x10+1x10)−(x30+1x30)=2×2−2=4−2x50+1x50=2…x2000+1x2000=2