We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
38
1
avatar

If we express $-2x^2 + 4x + 5$ in the form $a(x - h)^2 + k$, then what is $k$?

 Jun 25, 2019

Best Answer 

 #1
avatar+8406 
+2

If we express  \(-2x^2 + 4x + 5\)  in the form  \(a(x - h)^2 + k\) ,  then what is  \(k\) ?

 

----------

 

=   -2x2 + 4x + 5

                                     Factor  -2  out of the first two terms.

=   -2( x2 - 2x ) + 5

                                            Add  1  and subtract  1  to complete the square inside the parenthesees.

=   -2( x2 - 2x + 1 - 1 ) + 5

                                            Factor  x2 - 2x + 1  as  (x - 1)2

=   -2( (x - 1)2 - 1 ) + 5

                                     Distribute the  -2

=  -2(x - 1)2 + 2 + 5

                                    Combine like terms.

=  -2(x - 1)2 + 7

 

Now it is in the form  a(x - h)2 + k  and we can see that  k = 7

 Jun 25, 2019
 #1
avatar+8406 
+2
Best Answer

If we express  \(-2x^2 + 4x + 5\)  in the form  \(a(x - h)^2 + k\) ,  then what is  \(k\) ?

 

----------

 

=   -2x2 + 4x + 5

                                     Factor  -2  out of the first two terms.

=   -2( x2 - 2x ) + 5

                                            Add  1  and subtract  1  to complete the square inside the parenthesees.

=   -2( x2 - 2x + 1 - 1 ) + 5

                                            Factor  x2 - 2x + 1  as  (x - 1)2

=   -2( (x - 1)2 - 1 ) + 5

                                     Distribute the  -2

=  -2(x - 1)2 + 2 + 5

                                    Combine like terms.

=  -2(x - 1)2 + 7

 

Now it is in the form  a(x - h)2 + k  and we can see that  k = 7

hectictar Jun 25, 2019

3 Online Users