Circle A is in the interior of circle B. The diameter of circle B is 16 cm. What is the diameter of circle A for which the ratio of the shaded area to the area of circle A is 3:1?
We know that the area of the shaded region plus the area of circle A equals the Area of Circle B. Since the shaded area: area of the circle, 3:1, we have \(3x+x=64\pi\)\(4x=64\pi, x=16\pi\) . Directly, we \(\)get \(\pi*r^2=16\pi\), so \(r^2=16, r=4.\) Remember that length can't be negative! Thus, the diameter of circle A is \(4*2=\boxed{8}\) cm.
We know that the area of the shaded region plus the area of circle A equals the Area of Circle B. Since the shaded area: area of the circle, 3:1, we have \(3x+x=64\pi\)\(4x=64\pi, x=16\pi\) . Directly, we \(\)get \(\pi*r^2=16\pi\), so \(r^2=16, r=4.\) Remember that length can't be negative! Thus, the diameter of circle A is \(4*2=\boxed{8}\) cm.