We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
33
3
avatar

Find the smallest positive multiple of 7 that leaves a remainder of 4 when divided by 6, 9, 15, and 18.

 Dec 2, 2019
 #1
avatar
+1

112 mod [6, 9, 15, 18] = 4

 Dec 2, 2019
 #2
avatar+23575 
+2

Find the smallest positive multiple of 7 that leaves a remainder of 4 when divided by 6, 9, 15, and 18.

 

\(\begin{array}{|rcll|} \hline 7x &\equiv& 4 \pmod{6} \\ 7x &\equiv& 4 \pmod{9} \\ 7x &\equiv& 4 \pmod{15} \\ 7x &\equiv& 4 \pmod{18} \\ \hline 7x &\equiv& 4 \pmod{ lcm(6,9,15,18) } \quad | \quad lcm(6,9,15,18) = 90 \\ 7x &\equiv& 4 \pmod{ 90 }\quad | \quad 4\equiv 94\equiv 184\equiv 274\equiv \underbrace{364}_{ \text{divisible by 7} }\pmod{ 90 } \\ 7x &\equiv& 364 \pmod{ 90 } \quad | \quad : 7 \\ \mathbf{ x } &\equiv& \mathbf{ 52 \pmod{ 90 } } \\\\ x &=& 52+90z \qquad z\in \mathbb{Z} \\ x_{\text{min}} &=& 52 + 90* 0 \\ x_{\text{min}} &=& 52 \\ \hline \end{array}\)

 

The smallest positive multiple of 7 is \(52* 7 = \mathbf{364}\)

 

Thank you Guest!

 

laugh

 Dec 3, 2019
edited by heureka  Dec 4, 2019
edited by heureka  Dec 4, 2019
edited by heureka  Dec 4, 2019
 #3
avatar
+1

Both of the above answers are wrong!

 

112 mod 15 = 7 NOT 4

 

The smallest positive multiple of 7 that satisfies the 4 congruences is 364:

The LCM of 90m + 4, where m=0, 1, 2, 3.....etc.

Since the smallest multiples of 7 that satisfies the 4 congruences is:

4 x 90 + 4 = 364.

364 mod 6 = 4

364 mod 9 = 4

364 mod 15 = 4

364 mod 18 = 4

 Dec 3, 2019
edited by Guest  Dec 4, 2019

27 Online Users

avatar