We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
146
2
avatar

If \(\lfloor x \rfloor = 4,\) find the sum of all possible values of \(\lfloor 4x \rfloor.\)

 May 9, 2019
 #1
avatar+115 
+6

Another way of writing \(\lfloor x\rfloor = 4\) defines x values in the interval of \(4 \leq x < 5\)

 

If we multiply this interval by 4, we have that \(16\leq 4x < 20\).

 

In order to get the sum, we have to acknowledge that our 4x is still being floored, given \(\lfloor 4x \rfloor\). Therefore, only integer values within the interval can be a result of this. For example, \(x = 4.625\) satisfies that \(\lfloor x \rfloor = 4\). Then, \(\lfloor 4x \rfloor = \lfloor 4*4.625\rfloor = \lfloor 18.5 \rfloor = 18\)

 

The integers within \([16, 20)\) are 16, 17, 18, and 19. \(16+17+18+19= 70\).

 

If \(\lfloor x \rfloor = 4, \) the sum of all possible values of \(\lfloor 4x \rfloor\) is \(70\).

 May 9, 2019
 #2
avatar+8724 
+3

Hey, that's a good way to do it! smiley

hectictar  May 9, 2019

25 Online Users

avatar
avatar
avatar
avatar