5) (n, k) are positive integers, solve n(n + 2) = k^2
6) (n, k) are positive integers, solve n(n + 4) = k^2
7) (n, k) are positive integers, solve n(n + 5) = k^2
5) (n, k) are positive integers, solve n(n + 2) = k^2
6) (n, k) are positive integers, solve n(n + 4) = k^2
Hello Guest!
\(\{n,k\}\subset \mathbb Z\)
\(n(n+2)=k^2\)
\(k\in\{ \) 4, 9, 16, 25, 36, 49, 64, 81, 100, 121 \(\}\)
\(n\in\{ \) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\(\}\)
\(n(n+2)\in \{\)3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168\(\}\)
No solution for positive n, but if n = -1
\(-1(-1+2)=i^2\)
\(n(n+5)=k^2\)
No solution for positive n, but if n = -4
\(-4(-4+5)=(2i)^2\)
!