+0  
 
+1
6
2
avatar+7 

Solve for the variable \(x\) in terms \(y\) of \(z\) and :

\(xy+2x=(x-2y+z)/3\)
 

 Jul 19, 2024

Best Answer 

 #2
avatar+129852 
+3

Multiply both sides by 3

 

3xy + 6x  = x - 2y + z

 

3xy + 5x = z - 2y

 

x ( 3y + 5)  = z - 2y

 

x = [ z -2y ] / [ 3y + 5]

 

cool cool cool

 Jul 19, 2024
 #1
avatar+826 
+1

Let's solve for x in terms of y and z:

 

1. Combine like terms with x:

 

xy + 2x - x = -2y + z/3

 

2. Simplify the equation:

 

(x + xy) - x = -2y + z/3

 

xy = -2y + z/3

 

3. Isolate x:

 

Divide both sides by y (assuming y ≠ 0). Note that if y = 0, there would be no solution for x, as the denominator would be zero.

 

Therefore, x = (-2y + z/3) / y

 

Simplified form: We can further simplify the expression by combining terms in the numerator:

 

x = (-6 + z) / (3y)

 

This form expresses x in terms of y and z.

 Jul 19, 2024
 #2
avatar+129852 
+3
Best Answer

Multiply both sides by 3

 

3xy + 6x  = x - 2y + z

 

3xy + 5x = z - 2y

 

x ( 3y + 5)  = z - 2y

 

x = [ z -2y ] / [ 3y + 5]

 

cool cool cool

CPhill Jul 19, 2024

2 Online Users