We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
80
1
avatar

The distance between the two intersections of \(x=y^4\) and \(x+y^2=1\) is \(\sqrt{u+v\sqrt5}\). Find the ordered pair, (u,v).

 Jan 16, 2019
 #1
avatar+99521 
+1

x = y^4

x + y^2 = 1        sub the first into the second and we have that

 

y^4 + y^2  = 1        we can complete the square on y thusly

 

y^4 + y^2 + 1/4    = 1 + 1/4       factor and simplify

 

(y^2 + 1/2)^2 =  5/4           take both roots

 

y^2 + 1/2  =  ± sqrt (5) / 2

 

y^2 =  ±sqrt (5) / 2 - 1/2

 

y^2 =      [ -1 ± sqrt (5) ] / 2        take both roots again

 

y = ± sqrt [ [  -1 ± sqrt (5) ] / 2 ]

 

Let y  =   a ,  -a

 

So  ......x = y^4   =   a^4

 

So   we have the points      (a^4, a )   and ( a^4, - a)

 

So....the distance between these points  =

 

sqrt [ (a^4 - a^4) + ( a  -  -a)^2 ]  =  sqrt  [ (2a)^2]  =    2a

 

So...we have, 2a  =

 

2 √ [ ( -1  ± √5) / 2 ]      but we cannot take a root of a negative so the distance must be

 

2 √ [ ( -1  + √5) / 2 ]   =

 

√ [  4 ( -1  + √5) / 2 ]  =

 

√ [ - 2 + 2√5 ]

 

So  (u, v)  =  (-2, 2)

 

 

cool cool cool

 Jan 17, 2019

29 Online Users

avatar
avatar