+0  
 
+1
494
1
avatar+29 

The Fibonacci sequence is defined by \(F_0 = 0,,F_1=1\) and \(F_n = F_{n - 1} + F_{n - 2} \) for all \(n \ge 2.\)

Compute \(\det \begin{pmatrix} F_{1000} & F_{1001} & F_{1002} \\ F_{1001} & F_{1002} & F_{1003} \\ F_{1002} & F_{1003} & F_{1004} \end{pmatrix} .\)
 

 Jun 14, 2020
 #1
avatar
0

det([[F_{1000}, F_{1001}, F_{1002}],[F_{1001},F_{1002},F_{1003}],[F_{1002},F_{1003},F_{1004}]) = -4.

 Jun 14, 2020

2 Online Users

avatar