2y(sqrt2)-3=5y/(sqrt2) +1
solve equation giving answer in k(sqrt2)
(for A-level maths)
Solve for y:
2 sqrt(2) y-3 = 5 1/sqrt(2) y+1
Rationalize the denominator. (5 y)/sqrt(2) = (5 y)/sqrt(2)×(sqrt(2))/(sqrt(2)) = (5 y sqrt(2))/(2):
2 sqrt(2) y-3 = (5 sqrt(2) y)/(2)+1
Put each term in (5 y sqrt(2))/2+1 over the common denominator 2: (5 y sqrt(2))/2+1 = (5 sqrt(2) y)/2+2/2:
2 sqrt(2) y-3 = (5 sqrt(2) y)/2+2/2
(5 sqrt(2) y)/2+2/2 = (5 sqrt(2) y+2)/(2):
2 sqrt(2) y-3 = (5 sqrt(2) y+2)/(2)
Multiply both sides by 2:
2 (2 sqrt(2) y-3) = (2 (5 sqrt(2) y+2))/(2)
(2 (5 sqrt(2) y+2))/(2) = 2/2×(5 sqrt(2) y+2) = 5 sqrt(2) y+2:
2 (2 sqrt(2) y-3) = 5 sqrt(2) y+2
Expand out terms of the left hand side:
4 sqrt(2) y-6 = 5 sqrt(2) y+2
Subtract 5 sqrt(2) y from both sides:
(4 sqrt(2) y-5 sqrt(2) y)-6 = (5 sqrt(2) y-5 sqrt(2) y)+2
4 (sqrt(2) y)-5 (sqrt(2) y) = -(sqrt(2) y):
-sqrt(2) y-6 = (5 sqrt(2) y-5 sqrt(2) y)+2
5 sqrt(2) y-5 sqrt(2) y = 0:
-(sqrt(2) y)-6 = 2
Add 6 to both sides:
(6-6)-sqrt(2) y = 2+6
6-6 = 0:
-sqrt(2) y = 2+6
2+6 = 8:
-sqrt(2) y = 8
Divide both sides of -sqrt(2) y = 8 by -sqrt(2):
-(sqrt(2) y)/(-sqrt(2)) = 8/(-sqrt(2))
(-sqrt(2))/(-sqrt(2)) = 1:
y = 8/(-sqrt(2))
Multiply numerator and denominator of 8/(-sqrt(2)) by -1:
y = (-8)/sqrt(2)
Rationalize the denominator. (-8)/sqrt(2) = (-8)/sqrt(2)×(sqrt(2))/(sqrt(2)) = (-8 sqrt(2))/(2):
y = (-8 sqrt(2))/(2)
(-8)/2 = (2 (-4))/2 = -4:
Answer: |y = -4 sqrt(2)