We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
128
2
avatar+544 

What is the residue of 9^2010, modulo 17?

 Jul 25, 2019
 #1
avatar
0

9^2010 mod 17 = 13

 Jul 25, 2019
 #2
avatar+23277 
+2

What is the residue of \(9^{2010}\), modulo \(17\) ?

 

\(\begin{array}{|rcll|} \hline && \mathbf{9^{2010} \pmod {17}} \\ &\equiv & \left(3^2 \right)^{2010} \pmod {17} \\ &\equiv & 3^{2\cdot 2010} \pmod {17} \\ &\equiv & 3^{4020} \pmod {17} \\ & & \boxed{ a^{\varphi(n)} \equiv 1 \pmod {n} \text{, if gcd(a,n)=1 } \\ 3^{\varphi(17)} \equiv 1 \pmod {17} \text{, gcd(3,17)=1 } \quad \varphi(17) = 16 \\ 3^{16} \equiv 1 \pmod {17} } \\ &\equiv & 3^{16\cdot 251+4} \pmod {17} \\ &\equiv & \left(3^{16} \right)^{251}3^4 \pmod {17} \\ &\equiv & \left(1 \right)^{251}3^4 \pmod {17} \\ &\equiv & 3^4 \pmod {17} \\ &\equiv & 81 \pmod {17} \\ &\equiv & \mathbf{13 \pmod {17}} \\ \hline \end{array}\)

 

laugh

 Jul 26, 2019

24 Online Users

avatar
avatar
avatar