We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
48
2
avatar

Find the sum of all possible values of the constant \(k\) such that the graph of the parametric equations \(\begin{align*} x &= 2+ 4\cos s,\\ y &= k-4\sin s, \end{align*}\)intersects the graph of the parametric equations \(\begin{align*} x&=1+\cos t,\\ y&=-3+\sin t \end{align*}\) at only one point.

 Nov 6, 2019
 #1
avatar
0

The possible values of k are 5 + sqrt(7) and 5 - sqrt(7), and their sum is 10.

 Nov 6, 2019
 #2
avatar+23516 
+3

Find the sum of all possible values of the constant k  such that the graph of the parametric equations
\(\begin{align*} x &= 2+ 4\cos s,\\ y &= k-4\sin s, \end{align*}\)
intersects the graph of the parametric equations
\(\begin{align*} x&=1+\cos t,\\ y&=-3+\sin t \end{align*}\)
at only one point.

 

\(\text{Let the center of circle 1, $~ \mathbf{c_1} = \dbinom{2}{k} $} \\ \text{Let the radius of circle 1, $~ \mathbf{r_1} = 4 $} \\ \text{Let the center of circle 2, $~ \mathbf{c_2} = \dbinom{1}{-3} $} \\ \text{Let the radius of circle 2, $~ \mathbf{r_2} = 1 $} \\ \text{$\mathbf{\overline{c_1c_2}}$ is the distance between $c_1$ and $c_2$ } \)

 

There is only one point, if \(\mathbf{|\overline{c_1c_2}| = r_1+r_2 }\)

 

\(\begin{array}{|rclcl|} \hline |\overline{c_1c_2}| &=& r_1+r_2 \\ |\sqrt{(2-1)^2+(k-(-3))^2} | &=& 4+1 \\ |\sqrt{1+(k+3)^2} | &=& 5 \\ 1+(k+3)^2 &=& 25 \\ (k+3)^2 &=& 24 \\ k+3 &=& \pm\sqrt{24} \\ \mathbf{k } &=& \mathbf{-3 \pm\sqrt{24}} & \text{or}& k=-3\pm 2\sqrt{6} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline k_1+k_2 &=& -3 +\sqrt{24}-3 -\sqrt{24} \\ k_1+k_2 &=& -6 \\ \hline \end{array} \)

 

The sum of all possible values of the constant k is -6

 

laugh

 Nov 6, 2019

11 Online Users

avatar
avatar