+0

# help

0
125
2

Find the sum of all possible values of the constant $$k$$ such that the graph of the parametric equations \begin{align*} x &= 2+ 4\cos s,\\ y &= k-4\sin s, \end{align*}intersects the graph of the parametric equations \begin{align*} x&=1+\cos t,\\ y&=-3+\sin t \end{align*} at only one point.

Nov 6, 2019

#1
0

The possible values of k are 5 + sqrt(7) and 5 - sqrt(7), and their sum is 10.

Nov 6, 2019
#2
+24364
+3

Find the sum of all possible values of the constant k  such that the graph of the parametric equations
\begin{align*} x &= 2+ 4\cos s,\\ y &= k-4\sin s, \end{align*}
intersects the graph of the parametric equations
\begin{align*} x&=1+\cos t,\\ y&=-3+\sin t \end{align*}
at only one point.

$$\text{Let the center of circle 1, ~ \mathbf{c_1} = \dbinom{2}{k} } \\ \text{Let the radius of circle 1, ~ \mathbf{r_1} = 4 } \\ \text{Let the center of circle 2, ~ \mathbf{c_2} = \dbinom{1}{-3} } \\ \text{Let the radius of circle 2, ~ \mathbf{r_2} = 1 } \\ \text{\mathbf{\overline{c_1c_2}} is the distance between c_1 and c_2 }$$

There is only one point, if $$\mathbf{|\overline{c_1c_2}| = r_1+r_2 }$$

$$\begin{array}{|rclcl|} \hline |\overline{c_1c_2}| &=& r_1+r_2 \\ |\sqrt{(2-1)^2+(k-(-3))^2} | &=& 4+1 \\ |\sqrt{1+(k+3)^2} | &=& 5 \\ 1+(k+3)^2 &=& 25 \\ (k+3)^2 &=& 24 \\ k+3 &=& \pm\sqrt{24} \\ \mathbf{k } &=& \mathbf{-3 \pm\sqrt{24}} & \text{or}& k=-3\pm 2\sqrt{6} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline k_1+k_2 &=& -3 +\sqrt{24}-3 -\sqrt{24} \\ k_1+k_2 &=& -6 \\ \hline \end{array}$$

The sum of all possible values of the constant k is -6

Nov 6, 2019