Let \(A := \mathbb{Q} \setminus \{0,1\}\) denote the set of all rationals other than 0 and 1. A function \(f : A \rightarrow \mathbb{R}\) has the property that for all \(x \in A\), \(f\left( x\right) + f\left( 1 - \frac{1}{x}\right) = \log\lvert x\rvert. \) Compute the value of \(f(2007)\).