+0  
 
0
414
1
avatar

Let \(A := \mathbb{Q} \setminus \{0,1\}\) denote the set of all rationals other than 0 and 1. A function \(f : A \rightarrow \mathbb{R}\) has the property that for all \(x \in A\)\(f\left( x\right) + f\left( 1 - \frac{1}{x}\right) = \log\lvert x\rvert. \) Compute the value of \(f(2007)\).

 Apr 13, 2019
 #1
avatar
0

I'm pretty sure this is $f(2007) = \frac{\log|2007| - \log\left|\frac{2006}{2007}\right| + \log\left|\frac{-1}{2006}\right|}{2} = \boxed{\log\left(2007/2006\right)}.$

 Aug 13, 2021

0 Online Users