+0  
 
+1
202
3
avatar+606 

Find all real numbers t such that $\frac{2}{3} t - 1 < t + 7 \le -2t + 15$. Give your answer as an interval.

off-topic
 Apr 2, 2018
edited by gueesstt  Apr 2, 2018
 #1
avatar+98173 
+3

\(\frac{2}{3} t - 1 < t + 7 \le -2t + 15 \)

 

We first have  the inequality

 

2/3 t - 1 < t + 7    subtract 7 from both sides

 

2/3 t  -  8 <  t     subtract 2/3 t  from both sides

 

-8 < 1/3 t     multiply both sides by 3

 

-24 <  t

 

 

And we have the second inequalty

 

t + 7 ≤  -2t + 15       add 2t  to both sides...subtract 7 from both sides

 

3t ≤  8      divide both sides by 3

 

t ≤ 8/3

 

So      (-24, 8/3 ]    is the solution

 

 

cool cool cool

 Apr 2, 2018
 #2
avatar+606 
+1

This was right thank you!

gueesstt  Apr 3, 2018
edited by gueesstt  Apr 9, 2018
 #3
avatar
-1

CPhill’s answer is correct, you fucking dumb s h i t. 

The only thing wrong here is the f u c kface who asked the question!

Guest Apr 3, 2018

38 Online Users

avatar
avatar
avatar