(x+y)^2-x^2-y^2=xy=8
xy*(x+y)=32=x^2*y+x*y^2
(x+y)^3-3x^2*y-3y^2*x=x^3+y^3=-32
:D
We have that \(8=x^2+y^2=x^2+2xy+y^2-2xy=(x+y)^2-2xy=16-2xy\), therefore .\(xy=\frac{16-8}{2}=4\) Since \(x^3+y^3=(x+y)(x^2-xy+y^2)=(x+y)(x^2+y^2-xy)\), we can directly substitute in the numerical values for each algebraic expression. This gives us \(x^3+y^3=(4)(8-4)=\boxed{16}\).