If the roots of \(p(x) = x^3 - 15x^2 + 40x + c\) form an arithmetic sequence, find c.
Let the roots be R, R + D , R + 2D
So....by Vieta.....
R + (R +D) + (R + 2D) = 15
3R + 3D = 15
3 (R + D) = 15
R + D = 5
D = 5 - R
2D = 10-2R
And
R( R + D) + R(R + 2D) + (R+D)(R+2D) = 40
R[5 ] + R [R + 10 -2R] + [5] [ R + 10 - 2R ] = 40
5R + R[10 -R] + 5[ 10-R] = 40
5R + 10R - R^2 + 50 - 5R = 40
-R^2 + 10R + 50 = 40
-R^2 + 10R + 10 = 0
R^2 - 10R - 10 = 0
R^2 - 10R + 25 = 10 + 25
(R - 5)^2 = 35
R = 5 + √35 or R = 5 - √35
So
If R = 5 + √35 or If R = 5 - √35
D = -√35 D = √35
And R(R+D)(R + 2D) = -c
So either
(5 + √35) (5) (5 - √35) = -c or (5- √35) (5) (5 + √35) = -c
(25 - 35)(5) = -c (25 - 35) (5) = -c
(-10)(5) = -c (-10)(5) = - c
-50 = -c -50 = -c
50 = c 50 = c
So
c = 50