+0  
 
0
811
1
avatar

help trying to figure out what do add to get the right fraction 

 

Convert the following to a fraction.

2 3

   5

 Sep 16, 2017
 #1
avatar+9481 
0

    \(2\frac35\)

 

=  \(2+\frac35\)                 Multiply the  2  by  \(\frac55\) .

                                ( \(\frac55\) = 1 , so this does not change the value of our expression. )

=  \(\frac55\,*\,2\,+\,\frac35\)

 

=  \(\frac{5*2}{5}\,+\,\frac35\)

 

=  \(\frac{10}{5}\,+\,\frac35\)

                               10 cookies + 3 cookies = 13 cookies, so 10 fifths + 3 fifths = 13 fifths.

=  \(\frac{13}{5}\)

 

55 n's:

n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n

 

55 n's and . :

n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n.

 

55 n's and .. :

n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n..

 

159 .'s:

.................... .................... .................... .................... .................... .................... .................... ...................

 

160 .'s:

.................... .................... .................... .................... .................... .................... .................... ....................

 Sep 16, 2017
edited by hectictar  Aug 20, 2018
edited by hectictar  Aug 20, 2018
edited by hectictar  Aug 20, 2018
edited by hectictar  Aug 21, 2018
edited by hectictar  Aug 21, 2018
edited by hectictar  Aug 21, 2018
edited by hectictar  Aug 27, 2018
edited by hectictar  Aug 27, 2018
edited by hectictar  Aug 27, 2018
edited by hectictar  Aug 27, 2018

2 Online Users

avatar