+0  
 
0
445
5
avatar+2493 

                         f(2x)=[f(x)]^2

 

Given the equation above, if f(1)=3, what is f(2) ?

Solveit  Dec 10, 2015

Best Answer 

 #5
avatar+92624 
+10

         f(2x)=[f(x)]^2

 

Given the equation above, if f(1)=3, what is f(2) ?

 

\(f(2x)=[f(x)]^2\\~\\ f(1)=3\\~\\ f(2*1)=[f(1)]^2\\~\\ f(2)=[f(1)]^2\\~\\ f(2)=[3]^2\\~\\ f(2)=9\)

Melody  Dec 11, 2015
 #1
avatar+8613 
0

This is kind of trickyy. :/

Hayley1  Dec 10, 2015
 #2
avatar+2493 
0

:(

Solveit  Dec 10, 2015
 #3
avatar+8613 
+5

Do you have any other questions? I'll try my best!

Hayley1  Dec 10, 2015
 #4
avatar+2493 
+5

i am doing tests right now if i have any question i will contact with you :)

Solveit  Dec 10, 2015
 #5
avatar+92624 
+10
Best Answer

         f(2x)=[f(x)]^2

 

Given the equation above, if f(1)=3, what is f(2) ?

 

\(f(2x)=[f(x)]^2\\~\\ f(1)=3\\~\\ f(2*1)=[f(1)]^2\\~\\ f(2)=[f(1)]^2\\~\\ f(2)=[3]^2\\~\\ f(2)=9\)

Melody  Dec 11, 2015

10 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.