+0  
 
0
842
5
avatar+2496 

                         f(2x)=[f(x)]^2

 

Given the equation above, if f(1)=3, what is f(2) ?

 Dec 10, 2015

Best Answer 

 #5
avatar+109512 
+10

         f(2x)=[f(x)]^2

 

Given the equation above, if f(1)=3, what is f(2) ?

 

\(f(2x)=[f(x)]^2\\~\\ f(1)=3\\~\\ f(2*1)=[f(1)]^2\\~\\ f(2)=[f(1)]^2\\~\\ f(2)=[3]^2\\~\\ f(2)=9\)

.
 Dec 11, 2015
 #1
avatar+8574 
0

This is kind of trickyy. :/

 Dec 10, 2015
 #2
avatar+2496 
0

:(

 Dec 10, 2015
 #3
avatar+8574 
+5

Do you have any other questions? I'll try my best!

 Dec 10, 2015
 #4
avatar+2496 
+5

i am doing tests right now if i have any question i will contact with you :)

 Dec 10, 2015
 #5
avatar+109512 
+10
Best Answer

         f(2x)=[f(x)]^2

 

Given the equation above, if f(1)=3, what is f(2) ?

 

\(f(2x)=[f(x)]^2\\~\\ f(1)=3\\~\\ f(2*1)=[f(1)]^2\\~\\ f(2)=[f(1)]^2\\~\\ f(2)=[3]^2\\~\\ f(2)=9\)

Melody Dec 11, 2015

36 Online Users

avatar
avatar
avatar
avatar