Let e(x) be an even function, and let o(x) be an odd function, such that

\(e(x) + o(x) = \frac{6}{x + 2} + x^2 + 2^x\)

for all real numbers x. Find o(1).

Guest Jul 27, 2019

#1**+1 **

Let e(x) be an even function, and let o(x) be an odd function, such that

\(e(x) + o(x) = \frac{6}{x + 2} + x^2 + 2^x \)

for all real numbers x. Find o(1).

\(e(x)=x^2+2^x\ \{even\ function \}\\ o(x)=\frac{6}{x+2}\ \{odd\ function\}\\ \color{blue} o(1)=\frac{6}{1+2}=2\)

\(e(x) + o(x) =(x^2+2^x)+( \frac{6}{x + 2} )\)

!

asinus Jul 27, 2019