We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
144
2
avatar

Let e(x) be an even function, and let o(x) be an odd function, such that

\(e(x) + o(x) = \frac{6}{x + 2} + x^2 + 2^x\)

for all real numbers x. Find o(1).

 Jul 27, 2019
 #1
avatar+8652 
+1

Let e(x) be an even function, and let o(x) be an odd function, such that

\(e(x) + o(x) = \frac{6}{x + 2} + x^2 + 2^x \)

for all real numbers x. Find o(1).

 

\(e(x)=x^2+2^x\ \{even\ function \}\\ o(x)=\frac{6}{x+2}\ \{odd\ function\}\\ \color{blue} o(1)=\frac{6}{1+2}=2\)

 

\(e(x) + o(x) =(x^2+2^x)+( \frac{6}{x + 2} )\)

 

laugh  !

 Jul 27, 2019
edited by asinus  Jul 27, 2019
 #2
avatar
0

Um I am sorry but this answer is incorrect

 Jul 28, 2019

5 Online Users

avatar