+0  
 
0
54
1
avatar+30 

Let cos(−θ) = 4 / 5 and tanθ > 0.

 

What is the value of sin(−θ)?

 

4 / 3

−4 / 5

4 / 5

−3 / 5

GuestMember  Feb 28, 2018
Sort: 

1+0 Answers

 #1
avatar+7048 
+2

By the Pythagorean identity...

 

( sin(-θ) )2 + ( cos(-θ) )2  =  1

                                                 We are given that  cos(-θ) = 4/5

( sin(-θ) )2 + ( 4/5 )2  =  1

 

( sin(-θ) )2 + 16/25  =  1

                                                 Subtract  16/25  from both sides of the equation.

( sin(-θ) )2  =  1 - 16/25

 

( sin(-θ) )2  =  9/25

                                                 Take the  ±  square root of both sides.

sin(-θ)  =  ±√[ 9/25 ]

 

sin(-θ)  =  ± 3 / 5

 

Since cos(-θ) is positive,  -θ  must be in Quadrant I or Quadrant IV.

 

Since tan θ > 0 ,  θ  must be in Quadrant I or III. That means  -θ  must be in Quadrant IV or II .

 

So  -θ  has to be in Quadrant IV, and  sin(-θ) has to be negative.

 

sin(-θ)  =  - 3 / 5

hectictar  Mar 1, 2018

13 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy