Line segment AB has endpoints A(7, 4) and B(2, 5). Find the coordinates of the point that divides the line segment directed from A to B in the ratio of 1:3
The coordinates of point Y(name this point Y) can be found by: \((\frac{x_1+\gamma x_2}{1+\gamma}, \frac{y_1+\gamma y_2}{1+\gamma})\), where gamma(\(\gamma\)) is the ratio of the coordinates(1:3).
\((\frac{7+\frac{1}{3}*2}{1+\frac{1}{3}},\frac{4+\frac{1}{3}*5}{1+\frac{1}{3}})\)=\((\frac{23}{4}, \frac{17}{4}).\)
The coordinates of point Y(name this point Y) can be found by: \((\frac{x_1+\gamma x_2}{1+\gamma}, \frac{y_1+\gamma y_2}{1+\gamma})\), where gamma(\(\gamma\)) is the ratio of the coordinates(1:3).
\((\frac{7+\frac{1}{3}*2}{1+\frac{1}{3}},\frac{4+\frac{1}{3}*5}{1+\frac{1}{3}})\)=\((\frac{23}{4}, \frac{17}{4}).\)