\(x=\frac{2\sqrt[3]{3(270-31\sqrt{69})}}{3}\),\(y=\frac{15+\sqrt{69}}{3}\)
.x + y = 10 ---> x = 10 - y
x3 + y3 = 460 ---> (10 - y)3 + y3 = 460
(1000 - 300y + 30y2 - y3) + y3 = 460
30y2 - 300y + 1000 = 460
30y2 - 300y + 540 = 0
y2 - 10y + 18 = 0
Using the quadratic formula: y = 5 + sqrt(7) y = 5 - sqrt(7)
x + y = 10 ---> x = 10 - y
If y = 5 + sqrt(7) ---> x = 10 - ( 5 + sqrt(7) ) ---> x = 5 - sqrt(7)
If y = 5 - sqrt(7) ---> x = 10 - ( 5 - sqrt(7) ) ---> x = 5 + sqrt(7)
( 5 - sqrt(7), 5 + sqrt(7) ) and ( 5 + sqrt(7), 5 - sqrt(7) )