+0  
 
0
41
1
avatar+292 

If \(x^2 - x - 1 = 0\), what is the value of \(x^3 - 2x + 1\)?

 

-hihihi

 

😎😎😎

 Jan 12, 2021

Best Answer 

 #1
avatar+25656 
+3

If

\(x^2 - x - 1 = 0\), what is the value of \(x^3 - 2x + 1\)?

 

\(\begin{array}{|rcll|} \hline \mathbf{x^2 - x - 1} &=& \mathbf{0} \\ x^2 - x &=& 1 \qquad (1) \\ x^2 - 1 &=& x \qquad (2) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x^3 - 2x + 1} &=& \\ &=& x^2x - x - x + 1 \\ &=& x(x^2-1)-x+1 \quad | \quad \mathbf{x^2-1 = x} \\ &=& x*x-x+1 \\ &=& x^2-x+1 \quad | \quad \mathbf{x^2-x = 1} \\ &=& 1+1 \\ \mathbf{x^3 - 2x + 1}&=& \mathbf{2} \\ \hline \end{array}\)

 

laugh

 Jan 12, 2021
 #1
avatar+25656 
+3
Best Answer

If

\(x^2 - x - 1 = 0\), what is the value of \(x^3 - 2x + 1\)?

 

\(\begin{array}{|rcll|} \hline \mathbf{x^2 - x - 1} &=& \mathbf{0} \\ x^2 - x &=& 1 \qquad (1) \\ x^2 - 1 &=& x \qquad (2) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x^3 - 2x + 1} &=& \\ &=& x^2x - x - x + 1 \\ &=& x(x^2-1)-x+1 \quad | \quad \mathbf{x^2-1 = x} \\ &=& x*x-x+1 \\ &=& x^2-x+1 \quad | \quad \mathbf{x^2-x = 1} \\ &=& 1+1 \\ \mathbf{x^3 - 2x + 1}&=& \mathbf{2} \\ \hline \end{array}\)

 

laugh

heureka Jan 12, 2021

16 Online Users