We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
107
1
avatar

The sum \(\log_4(11)+\log_8(11)+\log_{64}(11)\) can be expressed in the form \(\log_b(n),\) where \(b\) and \(n\) are positive integers, and \(b\) is as small as possible. Find \(b + n.\)

 Apr 10, 2019
 #1
avatar+104069 
+1

log4(11) + log8(11) + log64(11)

 

Note that we can use the change-of-base theorem to write

 

log11/ log4  + log 11/ log 8   +  log 11 / 64  =

 

log 11/ log2^2    + log 11 / log 2^3  +  log 11 / log  2^6   =

 

log 11/ [2 log 2]  +  log 11 / [ 3 log 2 ] + log 11 /  6 log(2)  =

 

 

[ 1/2 + 1/3 + 1/6]  log 11 / log 2   =

 

[ 3/6 + 2/6 + 1/6 ]  log 11 / log 2  =

 

[ 1 ]   log 11 / log 2  =

 

Write back as

 

log 2 11

 

So  b + n  =   13

 

 

cool cool cool

 Apr 10, 2019

4 Online Users