We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
55
1
avatar

Find all n satisfying 1 + 3 + 5 + 7 + ... + 125 = n + (n + 2) + (n + 4) + (n + 6) + ... + 209.

 Nov 15, 2019
 #1
avatar+28250 
+2

"Find all n satisfying 1 + 3 + 5 + 7 + ... + 125 = n + (n + 2) + (n + 4) + (n + 6) + ... + 209."

 

L = 1+3+5+7+...+125 = 3969

 

R = n+(n+2)+(n+4)+(n+6)+...+209

Write the last term of R as n+2N

R = n*(N+1) + N*(N+1)

 

Now the last term n + 2N = 209, so N = (209 - n)/2, hence:

R = (n + 209)(211 - n)/4

 

Equate L and R:

(n + 209)(211 - n)/4 = 3969

 

I'll leave you to solve this quadratic to find the two values of n.

 Nov 15, 2019

4 Online Users

avatar