+0  
 
0
319
2
avatar

Simplify \(\frac{\sqrt{45 + \sqrt{1}} + \sqrt{45 + \sqrt{2}} + \sqrt{45 + \sqrt{3}} + \dots + \sqrt{45 + \sqrt{2024}}}{\sqrt{45 - \sqrt{1}} + \sqrt{45 - \sqrt{2}} + \sqrt{45 - \sqrt{3}} + \dots + \sqrt{45 - \sqrt{2024}}}\)

 Jan 27, 2019
 #1
avatar+770 
+2

Assuming that the numberator is the same as the denominator, the answer is \(\boxed{1}\)

 

Treat \(\sqrt{45 + \sqrt{1}} + \sqrt{45 + \sqrt{2}} ... + \sqrt{45 + \sqrt{2024}}\) as X. We will have \(\dfrac{X}{X}\), which simplifies into 1. 

 

Hope this helps, 

- PM

 Jan 27, 2019
 #2
avatar+109468 
0

PM it is not 1/1 

The top has + signs and the bottom has - signs. So the ansswer is more than 1

Melody  Jan 27, 2019

10 Online Users

avatar
avatar
avatar