We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
283
3
avatar

Simplify \(i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.\)

 Sep 5, 2018
edited by Guest  Sep 6, 2018

Best Answer 

 #2
avatar+102905 
+2

Note the repeating pattern  of  length  4

i^1   = i

i^2  = -1

i^3  = -i

i^4  =  1

 

So....the sum of this series  from i^1  to  i*96   = 0

 

So...the sum of the last  three terms   = i^97  + i^98  + i^99  = i + -1 +  -i   = -1

 

So...this series sums  to  0 + (-1)  = -1

 

 

cool cool cool

 Sep 6, 2018
 #1
avatar+5766 
+1

\(\displaystyle \sum \limits_{k=1}^n~\alpha^k =\dfrac{\alpha \left(\alpha ^n-1\right)}{\alpha -1}\)

 

letting \(\alpha=i,~n=99,~\text{and assuming }i=\sqrt{-1}\)

 

\(\displaystyle \sum \limits_{k=1}^{99} ~i^k = \dfrac{i(i^{100}-1)}{i-1} = 0\)

.
 Sep 6, 2018
 #2
avatar+102905 
+2
Best Answer

Note the repeating pattern  of  length  4

i^1   = i

i^2  = -1

i^3  = -i

i^4  =  1

 

So....the sum of this series  from i^1  to  i*96   = 0

 

So...the sum of the last  three terms   = i^97  + i^98  + i^99  = i + -1 +  -i   = -1

 

So...this series sums  to  0 + (-1)  = -1

 

 

cool cool cool

CPhill Sep 6, 2018
 #3
avatar+23040 
+8

Simplify

\(\large{i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.} \)

 

Geometric sequence:

\(\begin{array}{|rcll|} \hline s &=& i^1+&i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99} \quad & | \quad \cdot i \\ i\cdot s &=& &i^2+i^3+i^4+\cdots+ i^{98} + i^{99}+i^{100} \\\\ \hline s-i\cdot s &=& i^1 - i^{100} \\ s(1-i) &=& i^1 - i^{100} \\\\ \mathbf{s} &\mathbf{=} & \mathbf{ \dfrac{i - i^{100}}{1-i} } \quad & | \quad i^{100}= \left(i^2 \right)^{50}=(-1)^{50}=1 \\\\ s & = & \dfrac{i-1}{1-i} \\ s & = & -\left( \dfrac{1-i}{1-i} \right) \\ \mathbf{s} &\mathbf{=} & \mathbf{-1} \\ \hline \end{array}\)

 

\(\boxed{\large{i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99} = -1}}\)

 

laugh

 Sep 6, 2018

12 Online Users

avatar